
1

Advanced Topics in DS:
Distributed Sorting

Matteo Di Giovanni
Claudio Di Sipio

Andrea Di Stefano
Cintia Scafa



2

Outline of the talk
Sorting is a classic problem that we are going to present in a 
distributed computing setting, analyzing some interesting 
topologies.
Distributed sorting is applied to managing and processing 
large data sets with a parallel and distributed algorithm, 
such as the MapReduce technique.

DEFINITION (Sorting): We choose a graph with n nodes 
v1,…, vn. Initially each node stores a value. After applying a 
sorting algorithm, node vk stores the kth smallest value.



3

First steps: Array Topology
Let’s start analyzing the problem with a simple topology, the 
array. 

Although this is a quite simple topology, we can use it to 
prove some interesting properties that we will reuse later 
on.

Here is a first algorithm for the sorting problem.

v1 v2 vn…



4

Odd/Even Sort
1: Given an array of n nodes (v1,…,vn), each storing a value 
(not sorted)
2: REPEAT

3: Compare and exchange the values at the nodes i and 
i+1, i odd

4: Compare and exchange the values at the nodes i and 
i+1, i even
5: UNTIL DONE

The “Compare and exchange” primitive works in this way: if 
value vi is stored in node i, after the operation i stores 
min(vi, vi+1) and node i+1 stores max(vi, vi+1).



5

0-1 Sorting Lemma
LEMMA 1: If an oblivious comparisons-exchange algorithm sorts 
all inputs of 0’s and 1’s, then it sorts arbitrary inputs.
Remark: “oblivious” means that the exchange between two values 
must only depend on their relative order. From now on, we will 
always restrict our inputs to 0’s and 1’s.
PROOF
Let’s prove the contrapositive: does not sort arbitrary input 
does not sort 0’s and 1’s.
Suppose we have an input x=x1,…,xn which is not sorted correctly 
by the algorithm. Then, there is a smallest value k such that the 
value at node vk after running the sorting algorithm is strictly 
larger than the kth smallest value, namely x[k]. We define a new 
input

This input must be sorted by the algorithm in the same way as 
before, so in any case in which ௜

∗ and ௝
∗ , this means that 

௜ ௝. Therefore, if the previous input was not correctly 
sorted, then also the new one can not be correctly sorted. 

QED



6

Correctness/Efficiency
THEOREM: Odd/Even algorithm sorts correctly in n steps.

PROOF: Thanks to Lemma 1, we can consider an array of 0’s 
and 1’s. The proof follows by induction.

• BASIS: Let j1 be the node with the rightmost 1. If j1 is 
odd (even), it will move in the first (second) step, and it 
will continue moving right until it reaches the rightmost 
node vn.

• INDUCTION: Let jk be the kth rightmost 1. By induction, 
after step k jk can move constantly right until it reaches 
destination. Since jk-1 moves after step k-1, for each step 
after step k jk gets a right 0-neighbor.

QED



7

Mesh topology
Let’s now analyze a different topology, the mesh (also known as 
grid). 

SHEARSORT
1: We are given a mesh with m rows and m columns, m even, n=m2.
2: REPEAT

3: in the odd phases 1, 3, … we sort all the rows; in the even 
phases 2, 4, … we sort all the columns, such that:

4: Columns are sorted such that small values move up
5: Odd rows (1, 3, …, m-1) are sorted such that small values 

move left
6: Even rows (2, 4, …, m) are sorted such that small values 

move right
5: UNTIL DONE

…

v1,1

v2,1

vm,1

v2,2

vm,2

…

…

…

…

vm,m
…

v1,2 v1,m

v2,m



8

Mesh topology: Shearsort
Theorem: Shearsort sorts correctly n values in  
time in snake-like order.

PROOF: Thanks to Lemma 1, we can consider a mesh of 0’s and 
1’s. We call a row clean if it contains only 0’s or only 1’s, dirty 
otherwise. Initially all rows can be dirty. The rows can be divided 
in 3 regions: the north, with only clean 0’s rows, the center, with 
dirty rows, and the south, with only clean 1’s rows.
After an odd phase, let us consider a pair of dirty rows, which will 
be sorted in opposite direction, as follows:

00000…11111
11111…00000

There are 3 possible cases: #0’s>#1’s, #0’s=#1’s, #0’s<#1’s. 
After column sorting, we are left with 1 clean row (or 2 in case 2) 
which moves to the correct region.
Each iteration halves the number of dirty rows, so the sorting 
requires log(n) phases, and in the end only 1 dirty row remains, 
which is sorted with the last row sorting phase. Each phase 
requires at most   operations, so the total time is 
  .



9

Sorting networks
We now propose a better topology, which is also used in 
many real application such as p2p networks. A sorting 
network is a set of input wires, comparators and output 
wires, that ensures that input values will be sorted on the 
output wires. A comparator takes two inputs x and y and 
returns two outputs x’ and y’ such that x’=min(x, y) and 
y’=max(x, y). In the following picture, wires are horizontal 
lines and comparators are vertical lines.

A sorting network

Output wiresInput wires

Comparators



10

Some definitions
Width
The width of a comparison network is the number of wires.
Depth
• The depth of an input wire is 0.
• The depth of a comparator is the maximum depth of its input 

wires plus 1. 
• The depth of an output wire of a comparator is the depth of 

the latter.
• The depth of a comparison network is the maximum depth of an 

output wire.
Bitonic sequence
A bitonic sequence is a sequence of numbers that first 
monotonically increases, then monotonically decreases, or vice 
versa.
Example:
<1, 4, 5, 9, 7, 6, 2> is a bitonic sequence.
<2, 5, 4, 7> is not a bitonic sequence.
Remark: by using Lemma 1, a bitonic sequence has the form 0i1j0k

or 1i0j1k, with i,j,k≥0.



11

Half Cleaner
A half cleaner is a comparison network of depth 1, where we 
compare wire i with wire i+n/2, for i=1,…,n/2 (assume n even).

Half cleaner of width 16



12

Half Cleaner
LEMMA 2
If we feed a bitonic sequence into a half cleaner, it cleans 
(makes all 0’s or all 1’s) either the upper or the lower half of 
the n wires. The other half is bitonic.

PROOF
Assume the input is of the form 0i1j0k, for i,j,k≥0. If the 
midpoint falls into the 0’s the input is already clean/bitonic 
and it will stay so. Otherwise, the half cleaner acts as 
Shearsort with 2 adjacent rows, as we previously proved.
The case 1i0j1k is symmetric.

QED



13

Bitonic Sequence Sorter
A bitonic sequence sorter of width n (n=2k) is made up of a 
half cleaner of width n, followed by 2 bitonic sequence 
sorters of width n/2. A bitonic sequence sorter of width 1 is 
empty.

Bitonic sequence sorter of width 8

Half 
cleaner of 
width 8

Bitonic 
sequence 
sorters 
of width 
4



14

Bitonic Sequence Sorter
LEMMA 3
A bitonic sequence sorter of width n sorts bitonic sequences 
of length n. It has depth log n.

PROOF
All the components of a bitonic sequence sorter are half 
cleaners, that correctly sort bitonic sequences. At each 
step, the original sequence is divided in 2 parts, which are 
still bitonic and are fed in 2 half cleaners. The claim follows 
by proof of Lemma 2.
The bitonic sequence sorter has depth log n, since the 
sequence is halved at every step.

QED



15

Merging Network
A merging network of width n is a merger of width n
followed by two bitonic sequence sorters of width n/2. A
merger is a depth-one network where we compare wire i with 
wire n-i+1, for i=1,…,n/2.

Merging network of width 16

Merger of 
width 16

Bitonic 
sequence 
sorters of 
width 8



16

Merging Network
LEMMA 4
A merging network of width n merges two sorted input 
sequences of length n/2 each into one sorted sequence of 
length n.

PROOF
The intuition follows directly from proofs of Lemmas 2 and 
3. After the merger step, one half of the sequence is clean 
and the other is bitonic, so it will be correctly sorted by the 
bitonic sequence sorter.

QED



17

Batcher’s “Bitonic” Sorting Network
A batcher sorting network of width n consists of two batcher 
sorting networks of width n/2 followed by a merging network of 
width n. A batcher sorting network of width 1 is empty.

Batcher sorting network of width 16

Batcher 
sorting 
network of 
width 8

Merging 
network of 
width 16



18

Batcher’s “Bitonic” Sorting Network
THEOREM
A sorting network sorts an arbitrary sequence of n values. It has 
depth O(log2n).

PROOF
At recursive stage k (k=1,2,…,log n) we merge 2k sorted sequence 
into 2k-1 sorted sequences. The depth d(n) of the sorting network 
of level n is the depth of a sorting network of level n/2 plus the 
depth m(n) of a merging network.
d(n) = d(n/2) + m(n)
d(1) = 0 (the sorter is empty)
Since a merging network of width n has the same depth as a 
bitonic sequence sorter of width n, we know by Lemma 3 that 
m(n)=log(n).
This gives a recursive formula for d(n) which solves to 
d(n)=½log2(n)+½log(n) (derived from case 2 of Master Theorem).

QED



19

Concluding remarks
Simulating a Batcher’s sorting network on an ordinary 
sequential computer takes time O(n log2n).
As you know, there exist sequential sorting algorithms that 
sort in asymptotically optimal time O(n log n). So, is there a 
sorting network with depth O(log n)?
Yes, indeed in 1983 Ajtai, Komlos and Szemeredi proposed a 
O(log n) sorting network, but the constant hidden in big-O is 
too large to be practical.



20


